563 research outputs found

    Legal, ethical and socio-economic aspects of community telecare

    Get PDF

    MR imaging of meniscal tears

    Get PDF
    Background: Menisci transmit the forces across the joint and cushion the mechanical loading of the joint. Thus, it is important to identify meniscal tear. A thorough understanding of normal meniscal anatomy and surrounding structure is critical for diagnosis. Magnetic resonance imaging is the current modality of choice providing fine resolution and multi-planar imaging for identifying the meniscal injuries and the various pattern of tear, helping to plan the subsequent management. The purpose of the work was to study the role of MRI in classifying the meniscal injuries.Methods: MRI Knee of 136 patients with meniscal injuries was studied. All the MR imaging scans were performed on 1.5-T MR system (Siemens magnetom Essenza).Results: A total of 136 patients were studied in which majority of the patient’s i.e.  90.44 % had medial meniscal tear while 18.38 % patients had lateral meniscal tear. Both medial and lateral meniscal tears were found in 8.82 % patients. Among the different types of tears, horizontal tear was the most common tear in both medial and lateral meniscus comprising 52.8 % and 52 % respectively. The tears being most common in the age group 41-50years. There were associated injuries to the other ligaments of the knee joint along with meniscal tear, ACL tear being the most common and was seen in 50% of patients.Conclusions: MRI is a good modality for classifying meniscal injury and evaluation of injuries to the associated ligaments. Secondary signs are good predictors of underlying meniscal tear in equivocal cases

    Laser synthesis of ligand-free bimetallic nanoparticles for plasmonic applications.

    Get PDF
    A picosecond laser ablation approach has been developed for the synthesis of ligand-free AuAg bimetallic NPs where the relative amount of Ag is controlled in situ through a laser shielding effect. Various measurements, such as optical spectroscopy, transmission electron microscopy combined with energy dispersive X-ray spectroscopy and inductively coupled plasma optical emission spectrometry, revealed the generation of homogenous 15 nm average size bimetallic NPs with different compositions and tunable localized surface plasmon resonance. Furthermore, ligand-free metallic nanoparticles with respect to chemically synthesized nanoparticles display outstanding properties, i.e. featureless Raman background spectrum, which is a basic requirement in many plasmonic applications such as Surface Enhanced Raman Spectroscopy. Various molecules were chemisorbed on the nanoparticle and SERS investigations were carried out, by varying the laser wavelength. The SERS enhancement factor for AuAg bimetallic NPs shows an enhancement factor of about 5.7 × 105 with respect to the flat AuAg surface

    Upregulated sirtuin 1 by miRNA-34a is required for smooth muscle cell differentiation from pluripotent stem cells

    Get PDF
    © 2015 Macmillan Publishers Limited. All rights reserved. microRNA-34a (miR-34a) and sirtuin 1 (SirT1) have been extensively studied in tumour biology and longevityaging, but little is known about their functional roles in smooth muscle cell (SMC) differentiation from pluripotent stem cells. Using well-established SMC differentiation models, we have demonstrated that miR-34a has an important role in SMC differentiation from murine and human embryonic stem cells. Surprisingly, deacetylase sirtuin 1 (SirT1), one of the top predicted targets, was positively regulated by miR-34a during SMC differentiation. Mechanistically, we demonstrated that miR-34a promoted differentiating stem cells' arrest at G0G1 phase and observed a significantly decreased incorporation of miR-34a and SirT1 RNA into Ago2-RISC complex upon SMC differentiation. Importantly, we have identified SirT1 as a transcriptional activator in the regulation of SMC gene programme. Finally, our data showed that SirT1 modulated the enrichment of H3K9 tri-methylation around the SMC gene-promoter regions. Taken together, our data reveal a specific regulatory pathway that miR-34a positively regulates its target gene SirT1 in a cellular context-dependent and sequence-specific manner and suggest a functional role for this pathway in SMC differentiation from stem cells in vitro and in vivo

    Synthesis, Purification and Crystallization of Guanine-rich RNA Oligonucleotides

    Get PDF
    Guanine-rich RNA oligonucleotides display many novel structural motifs in recent crystal structures. Here we describe the procedures of the chemical synthesis and the purification of such RNA molecules that are suitable for X-ray crystallographic studies. Modifications of the previous purification methods allow us to obtain better yields in shorter time. We also provide 24 screening conditions that are very effective in crystallization of the guanine-rich RNA oligonucleotides. Optimal crystallization conditions are usually achieved by adjustment of the concentration of the metal ions and pH of the buffer. Crystals obtained by this method usually diffract to high resolution

    MAGIA, a web-based tool for miRNA and Genes Integrated Analysis

    Get PDF
    MAGIA (miRNA and genes integrated analysis) is a novel web tool for the integrative analysis of target predictions, miRNA and gene expression data. MAGIA is divided into two parts: the query section allows the user to retrieve and browse updated miRNA target predictions computed with a number of different algorithms (PITA, miRanda and Target Scan) and Boolean combinations thereof. The analysis section comprises a multistep procedure for (i) direct integration through different functional measures (parametric and non-parametric correlation indexes, a variational Bayesian model, mutual information and a meta-analysis approach based on P-value combination) of mRNA and miRNA expression data, (ii) construction of bipartite regulatory network of the best miRNA and mRNA putative interactions and (iii) retrieval of information available in several public databases of genes, miRNAs and diseases and via scientific literature text-mining. MAGIA is freely available for Academic users at http://gencomp.bio.unipd.it/magia

    Suppression of Implanted MDA-MB 231 Human Breast Cancer Growth in Nude Mice by Dietary Walnut

    Get PDF
    Walnuts contain components that may slow cancer growth including omega 3 fatty acids, phytosterols, polyphenols, carotenoids, and melatonin. A pilot study was performed to determine whether consumption of walnuts could affect growth of MDA-MB 231 human breast cancers implanted into nude mice. Tumor cells were injected into nude mice that were consuming an AIN-76A diet slightly modified to contain 10% corn oil. After the tumors reached 3 to 5 mm diameter, the diet of one group of mice was changed to include ground walnuts, equivalent to 56 g (2 oz) per day in humans. The tumor growth rate from Day 10, when tumor sizes began to diverge, until the end of the study of the group that consumed walnuts (2.9 ± 1.1 mm3/day; mean ± standard error of the mean) was significantly less (P \u3e 0.05, t-test of the growth rates) than that of the group that did not consume walnuts (14.6 ± 1.3 mm 3 /day). The eicosapentaenoic and docosahexaenoic acid fractions of the livers of the group that consumed walnuts were significantly higher than that of the group that did not consume walnuts. Tumor cell proliferation was decreased, but apoptosis was not altered due to walnut consumption. Further work is merited to investigate applications to cancer in humans

    Toxicity in mice expressing short hairpin RNAs gives new insight into RNAi

    Get PDF
    Short hairpin RNAs can provide stable gene silencing via RNA interference. Recent studies have shown toxicity in vivo that appears to be related to saturation of the endogenous microRNA pathway. Will these findings limit the therapeutic use of such hairpins

    Glycosaminoglycan and Proteoglycan Biotherapeutics in Articular Cartilage Protection and Repair Strategies: Novel Approaches to Visco?supplementation in Orthobiologics

    Get PDF
    The aim of this study is to review developments in glycosaminoglycan and proteoglycan research relevant to cartilage repair biology and in particular the treatment of osteoarthritis (OA). Glycosaminoglycans decorate a diverse range of extracellular matrix and cell associated proteoglycans conveying structural organization and physico‐chemical properties to tissues. They play key roles mediating cellular interactions with bioactive growth factors, cytokines, and morphogenetic proteins, and structural fibrillar collagens, cell interactive and extracellular matrix proteoglycans, and glycoproteins which define tissue function. Proteoglycan degradation detrimentally affects tissue functional properties. Therapeutic strategies have been developed to counter these degenerative changes. Neo‐proteoglycans prepared from chondroitin sulfate or hyaluronan and hyaluronan or collagen‐binding peptides emulate the interactive, water imbibing, weight bearing, and surface lubricative properties of native proteoglycans. Many neo‐proteoglycans outperform native proteoglycans in terms of water imbibition, matrix stabilization, and resistance to proteolytic degradation. The biospecificity of recombinant proteoglycans however, provides precise attachment to native target molecules. Visco‐supplements augmented with growth factors/therapeutic cells, hyaluronan, and lubricin (orthobiologicals) have the capacity to lubricate and protect cartilage, control inflammation, and promote cartilage repair and regeneration of early cartilage lesions and may represent a more effective therapeutic approach to the treatment of mild to moderate OA and deserve further study
    corecore